A Primal-Dual Decomposition Algorithm for Multistage Stochastic Convex Programming
نویسندگان
چکیده
This paper presents a new and high performance solution method for multistage stochastic convex programming. Stochastic programming is a quantitative tool developed in the field of optimization to cope with the problem of decision-making under uncertainty. Among others, stochastic programming has found many applications in finance, such as asset-liability and bond-portfolio management. However, many stochastic programming applications still remain computationally intractable because of their overwhelming dimensionality. In this paper we propose a new decomposition algorithm for multistage stochastic programming with a convex objective, based on the path-following interior point method combined with the homogeneous self-dual embedding technique. Our preliminary numerical experiments show that this approach is very promising in many ways for solving generic multistage stochastic programming, including its superiority in terms of numerical efficiency, as well as the flexibility in testing and analyzing the model.
منابع مشابه
Self-concordant Tree and Decomposition Based Interior Point Methods for Stochastic Convex Optimization Problem
We consider barrier problems associated with two and multistage stochastic convex optimization problems. We show that the barrier recourse functions at any stage form a selfconcordant family with respect to the barrier parameter. We also show that the complexity value of the first stage problem increases additively with the number of stages and scenarios. We use these results to propose a proto...
متن کاملPrimal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملOn regularization with normal solutions in decomposition methods for multistage stochastic programming
We consider well-known decomposition techniques for multistage stochastic programming and a new scheme based on normal solutions for stabilizing calculations as the iteration process progresses. The given algorithms combine ideas from finite perturbation of convex programs and level bundle methods to regularize the so-called forward step of these decomposition methods. In contrast to other regu...
متن کاملConvergence Analysis of Sampling-Based Decomposition Methods for Risk-Averse Multistage Stochastic Convex Programs
We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the al...
متن کاملNested Decomposition of Multistage Stochastic Integer Programs with Binary State Variables
Multistage stochastic integer programming (MSIP) combines the difficulty of uncertainty, dynamics, and non-convexity, and constitutes a class of extremely challenging problems. A common formulation for these problems is a dynamic programming formulation involving nested cost-to-go functions. In the linear setting, the cost-to-go functions are convex polyhedral, and decomposition algorithms, suc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 104 شماره
صفحات -
تاریخ انتشار 2005